Python3 数据结构
本章节我们主要结合前面所学的知识点来介绍Python数据结构。
列表
Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。
以下是 Python 中列表的方法:
方法 | 描述 |
---|---|
list.append(x) | 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。 |
list.extend(L) | 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。 |
list.insert(i, x) | 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。 |
list.remove(x) | 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。 |
list.pop([i]) | 从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。) |
list.clear() | 移除列表中的所有项,等于del a[:]。 |
list.index(x) | 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。 |
list.count(x) | 返回 x 在列表中出现的次数。 |
list.sort() | 对列表中的元素进行排序。 |
list.reverse() | 倒排列表中的元素。 |
list.copy() | 返回列表的浅复制,等于a[:]。 |
下面示例演示了列表的大部分方法:
实例
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]
注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。
将列表当做栈使用
在 Python 中,可以使用列表(list)来实现栈的功能。栈是一种后进先出(LIFO, Last-In-First-Out)数据结构,意味着最后添加的元素最先被移除。列表提供了一些方法,使其非常适合用于栈操作,特别是 append() 和 pop() 方法。
用 append() 方法可以把一个元素添加到栈顶,用不指定索引的 pop() 方法可以把一个元素从栈顶释放出来。
栈操作
- 压入(Push): 将一个元素添加到栈的顶端。
- 弹出(Pop): 移除并返回栈顶元素。
- 查看栈顶元素(Peek/Top): 返回栈顶元素而不移除它。
- 检查是否为空(IsEmpty): 检查栈是否为空。
- 获取栈的大小(Size): 获取栈中元素的数量。
以下是如何在 Python 中使用列表实现这些操作的详细说明:
1、创建一个空栈
实例
2、压入(Push)操作
使用 append() 方法将元素添加到栈的顶端:
实例
stack.append(2)
stack.append(3)
print(stack) # 输出: [1, 2, 3]
3、弹出(Pop)操作
使用 pop() 方法移除并返回栈顶元素:
实例
print(top_element) # 输出: 3
print(stack) # 输出: [1, 2]
4、查看栈顶元素(Peek/Top)
直接访问列表的最后一个元素(不移除):
实例
print(top_element) # 输出: 2
5、检查是否为空(IsEmpty)
检查列表是否为空:
实例
print(is_empty) # 输出: False
6、获取栈的大小(Size)
使用 len() 函数获取栈中元素的数量:
实例
print(size) # 输出: 2
实例
以下是一个完整的实例,展示了如何使用上述操作来实现一个简单的栈:
实例
def __init__(self):
self.stack = []
def push(self, item):
self.stack.append(item)
def pop(self):
if not self.is_empty():
return self.stack.pop()
else:
raise IndexError("pop from empty stack")
def peek(self):
if not self.is_empty():
return self.stack[-1]
else:
raise IndexError("peek from empty stack")
def is_empty(self):
return len(self.stack) == 0
def size(self):
return len(self.stack)
# 使用示例
stack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)
print("栈顶元素:", stack.peek()) # 输出: 栈顶元素: 3
print("栈大小:", stack.size()) # 输出: 栈大小: 3
print("弹出元素:", stack.pop()) # 输出: 弹出元素: 3
print("栈是否为空:", stack.is_empty()) # 输出: 栈是否为空: False
print("栈大小:", stack.size()) # 输出: 栈大小: 2
以上代码中,我们定义了一个 Stack 类,封装了列表作为底层数据结构,并实现了栈的基本操作。
输出结果如下:
栈顶元素: 3 栈大小: 3 弹出元素: 3 栈是否为空: False 栈大小: 2
将列表当作队列使用
在 Python 中,列表(list)可以用作队列(queue),但由于列表的特点,直接使用列表来实现队列并不是最优的选择。
队列是一种先进先出(FIFO, First-In-First-Out)的数据结构,意味着最早添加的元素最先被移除。
使用列表时,如果频繁地在列表的开头插入或删除元素,性能会受到影响,因为这些操作的时间复杂度是 O(n)。为了解决这个问题,Python 提供了 collections.deque,它是双端队列,可以在两端高效地添加和删除元素。
使用 collections.deque 实现队列
collections.deque 是 Python 标准库的一部分,非常适合用于实现队列。
以下是使用 deque 实现队列的示例:
实例
# 创建一个空队列
queue = deque()
# 向队尾添加元素
queue.append('a')
queue.append('b')
queue.append('c')
print("队列状态:", queue) # 输出: 队列状态: deque(['a', 'b', 'c'])
# 从队首移除元素
first_element = queue.popleft()
print("移除的元素:", first_element) # 输出: 移除的元素: a
print("队列状态:", queue) # 输出: 队列状态: deque(['b', 'c'])
# 查看队首元素(不移除)
front_element = queue[0]
print("队首元素:", front_element) # 输出: 队首元素: b
# 检查队列是否为空
is_empty = len(queue) == 0
print("队列是否为空:", is_empty) # 输出: 队列是否为空: False
# 获取队列大小
size = len(queue)
print("队列大小:", size) # 输出: 队列大小: 2
使用列表实现队列
虽然 deque更高效,但如果坚持使用列表来实现队列,也可以这么做。以下是如何使用列表实现队列的示例:
1. 创建队列
实例
2. 向队尾添加元素
使用 append() 方法将元素添加到队尾:
实例
queue.append('b')
queue.append('c')
print("队列状态:", queue) # 输出: 队列状态: ['a', 'b', 'c']
3. 从队首移除元素
使用 pop(0) 方法从队首移除元素:
实例
print("移除的元素:", first_element) # 输出: 移除的元素: a
print("队列状态:", queue) # 输出: 队列状态: ['b', 'c']
4. 查看队首元素(不移除)
直接访问列表的第一个元素:
实例
print("队首元素:", front_element) # 输出: 队首元素: b
5. 检查队列是否为空
检查列表是否为空:
实例
print("队列是否为空:", is_empty) # 输出: 队列是否为空: False
6. 获取队列大小
使用 len() 函数获取队列的大小:
实例
print("队列大小:", size) # 输出: 队列大小: 2
实例(使用列表实现队列)
实例
class Queue:
def __init__(self):
self.queue = []
def enqueue(self, item):
self.queue.append(item)
def dequeue(self):
if not self.is_empty():
return self.queue.pop(0)
else:
raise IndexError("dequeue from empty queue")
def peek(self):
if not self.is_empty():
return self.queue[0]
else:
raise IndexError("peek from empty queue")
def is_empty(self):
return len(self.queue) == 0
def size(self):
return len(self.queue)
# 使用示例
queue = Queue()
queue.enqueue('a')
queue.enqueue('b')
queue.enqueue('c')
print("队首元素:", queue.peek()) # 输出: 队首元素: a
print("队列大小:", queue.size()) # 输出: 队列大小: 3
print("移除的元素:", queue.dequeue()) # 输出: 移除的元素: a
print("队列是否为空:", queue.is_empty()) # 输出: 队列是否为空: False
print("队列大小:", queue.size()) # 输出: 队列大小: 2
虽然可以使用列表来实现队列,但使用 collections.deque 会更高效和简洁。它提供了 O(1) 时间复杂度的添加和删除操作,非常适合队列这种数据结构。
列表推导式
列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。
每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。
这里我们将列表中每个数值乘三,获得一个新的列表:
>>> [3*x for x in vec]
[6, 12, 18]
现在我们玩一点小花样:
[[2, 4], [4, 16], [6, 36]]
这里我们对序列里每一个元素逐个调用某方法:
实例
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
我们可以用 if 子句作为过滤器:
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
以下是一些关于循环和其它技巧的演示:
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]
列表推导式可以使用复杂表达式或嵌套函数:
['3.1', '3.14', '3.142', '3.1416', '3.14159']
嵌套列表解析
Python的列表还可以嵌套。
以下实例展示了3X4的矩阵列表:
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
以下实例将3X4的矩阵列表转换为4X3列表:
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
以上实例也可以使用以下方法来实现:
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
另外一种实现方法:
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
del 语句
使用 del 语句可以从一个列表中根据索引来删除一个元素,而不是值来删除元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表(我们以前介绍的方法是给该切割赋一个空列表)。例如:
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]
也可以用 del 删除实体变量:
>>> del a
元组和序列
元组由若干逗号分隔的值组成,例如:
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。
集合
集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。
可以用大括号({})创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典,下一节我们会介绍这个数据结构。
以下是一个简单的演示:
>>> print(basket) # 删除重复的
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # 检测成员
True
>>> 'crabgrass' in basket
False
>>> # 以下演示了两个集合的操作
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # a 中唯一的字母
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # 在 a 中的字母,但不在 b 中
{'r', 'd', 'b'}
>>> a | b # 在 a 或 b 中的字母
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # 在 a 和 b 中都有的字母
{'a', 'c'}
>>> a ^ b # 在 a 或 b 中的字母,但不同时在 a 和 b 中
{'r', 'd', 'b', 'm', 'z', 'l'}
集合也支持推导式:
>>> a
{'r', 'd'}
字典
另一个非常有用的 Python 内建数据类型是字典。
序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。
理解字典的最佳方式是把它看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同。
一对大括号创建一个空的字典:{}。
这是一个字典运用的简单例子:
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False
构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:
{'sape': 4139, 'jack': 4098, 'guido': 4127}
此外,字典推导可以用来创建任意键和值的表达式词典:
{2: 4, 4: 16, 6: 36}
如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:
{'sape': 4139, 'jack': 4098, 'guido': 4127}
遍历技巧
在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave
在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:
... print(i, v)
...
0 tic
1 tac
2 toe
同时遍历两个或更多的序列,可以使用 zip() 组合:
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:
... print(i)
...
9
7
5
3
1
要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear